This course introduces students to the theory and practice of data mining for knowledge discovery. This includes methods developed in the fields of statistics, large-scale data analytics, machine learning, and artificial intelligence for automatic or semi-automatic analysis of large quantities of data to extract previously unknown and interesting patterns. Topics include understanding varieties of data, classification, association rule analysis, cluster analysis, and anomaly detection. We will use software packages for data mining, explaining the underlying algorithms and their use and limitations. The course will include laboratory exercises, with data mining case studies using data from biological sequences and networks, social networks, linguistics, ecology, geo-spatial applications, marketing and psychology.
ISTA 321: Data Mining and Discovery
Course Credits
3